A Terahertz Programmable Digital Metasurface Based on Vanadium Dioxide

Author:

Pan Tianrui12ORCID,Liu Chenxi13,Peng Shuang13,Lu Haiying13,Zhang Han13,Xu Xiaoming13,Yang Fei13

Affiliation:

1. State Key Laboratory of Millimeter Waves, Nanjing 210096, China

2. School of Integrated Circuits, Southeast University, Nanjing 210096, China

3. School of Information Science and Engineering, Southeast University, Nanjing 210096, China

Abstract

Metasurfaces can realize the flexible manipulation of electromagnetic waves, which have the advantages of a low profile and low loss. In particular, the coding metasurface can flexibly manipulate electromagnetic waves through controllable sequence encoding of the coding units to achieve different functions. In this paper, a three-layer active coding metasurface is designed based on vanadium dioxide (VO2), which has an excellent phase transition. For the designed unit cell, the top patterned layer is composed of two split square resonant rings (SSRRs), whose gaps are in opposite directions, and each SSRR is composed of gold and VO2. When VO2 changes from the dielectric state to the metal state, the resonant mode changes from microstrip resonance to LC resonance, correspondingly. According to the Pancharatnam-Berry (P-B) phase, the designed metasurface can actively control terahertz circularly polarized waves in the near field. The metasurface can manipulate the order of the generated orbital angular momentum (OAM) beams: when the dielectric VO2 changes to metal VO2, the order l of the OAM beams generated by the metasurface changes from −1 to −2, and the purity of the generated OAM beams is relatively high. It is expected to have important application values in terahertz wireless communication, radar, and other fields.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Aeronautical Science Foundation of China

Foundation of Science and Technology on Monolithic Integrated Circuits and Modules Laboratory

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3