Study of parallel models for thermoelectric properties of double-layer thermoelectric thin films

Author:

Yang Shi-Guan,Lin Xin,He Jun-Song,Zhai Li-Jun,Cheng Lin,Lü Ming Hao,Liu Hong-Xia,Zhang Yan,Sun Zhi-Gang, ,

Abstract

Currently, the measurement and prediction of the electrical transport performance of thermoelectric double-layer membrane is often based on the theory of parallel model. However, the conditions under which the parallel model can be used lack theoretical and experimental support and validation. In this work, the Seebeck coefficients of Cu/Si and Ag/Si bilayers under applied temperature difference are obtained by using finite element theory simulations with the help of COMSOL Multiphysics software and compared with the results from the parallel model. Whether the ends of the bilayer plated with a metal Pt layer, and the insertion of a high-resistance/low-resistance/insulation interface between the bilayers affect the Seebeck coefficient measurements of the bilayer are investigated. It is found that when there is no Pt at the hot end or cold end, the potentials on the Si side and Cu side at the high-resistance and electrically insulating interfaces are uniformly distributed along the direction of the temperature gradient, respectively, and the measured Seebeck coefficients are the same as the values of the materials’ own, respectively, and the thermal potential on the Cu side at the low-resistance interface varies uniformly with the probe spacing <i>L</i>, while the thermal potential on the Si side shows a non-uniform variation. With Pt, the thermal potentials on the Cu side and Si side are uniformly distributed along the direction of the temperature gradient, and the measured values on both Si side and Cu side are the same as the Cu Seebeck coefficients, regardless of the insulating/high-resistance/low-resistance interface. The Si/Ag and Bi/Ag bilayers are investigated experimentally. In the absence of Pt, the absolute value of the Seebeck coefficient on the Si side of Si/Ag bilayer decreases with temperature decreasing, but the absolute value of the Seebeck coefficient on the Ag side increases with temperature decreasing. In the presence of Pt, the Seebeck coefficients on both sides of the Bi/Ag bilayer membrane are equal.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference25 articles.

1. Chen L D, Liu R H, Shi X 2017 Thermoelectric Materials and Devices (Beijing: Science Press) p1
陈立东, 刘睿恒, 史讯 2017 热电材料与器件 (北京: 科学出版社) 第1页

2. Mizue M, Masashi M, Kimihiro O 2013 J. Micromech. Microeng. 23 115016

3. Nouredine O, Alain P, Abdelkhalek K, Khalid H 2023 Eur. Phys. J. Appl. Phys. 98 29

4. Ihtesham C, Ravi P, Kelly L, Gregory C, Sridhar N, Ravi M, David K, Randall A, Rama V 2009 Nat. Nanotechnol. 4 235

5. Yang C, Souchay D, Knei M, et al. 2017 Nat. Commun. 8 16076

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3