Thermoelectric properties of Co doped TiNiCo<sub><i>x</i></sub>Sn alloys fabricated by melt spinning

Author:

He Jun-Song,Luo Feng,Wang Jian,Yang Shi-Guan,Zhai Li-Jun,Cheng Lin,Liu Hong-Xia,Zhang Yan,Li Yan-Li,Sun Zhi-Gang,Hu Ji-Fan, , , ,

Abstract

Although TiNiSn-based half-Heusler thermoelectric materials obtain high power factors, their high lattice thermal conductivity greatly hinders the improvement of thermoelectric properties. In this work, TiNiCo<sub><i>x</i></sub>Sn (<i>x</i> = 0–0.05) samples are prepared by melt spinning combined with spark plasma sintering method, and their phase, microstructure and thermoelectric properties are studied. The XRD results show that the main phase of all samples is TiNiSn phase, and no any other impurity phases are found, indicating that the high purity single phase can be prepared by rapid quenching process combined with SPS process. In the solidification process, the large cooling rate (10<sup>5</sup>–10<sup>6</sup> K/s) is conducive to obtaining the uniform nanocrystalline structure. The grains are closely packed, with grain sizes in a range of 200–600 nm. The grain sizes decrease to 50–400 nm for the Co-doping samples, which indicates that Co doping can reduce the grain size. For the <i>x</i> = 0 sample, the thermal conductivity of the rapid quenching sample is significantly lower than that of bulk sample, with an average decrease of about 17.8%. Compared with the TiNiSn matrix, the Co-doping sample has the thermal conductivity that decreases significantly, and the maximum decrease can reach about 38.9%. The minimum value of lattice thermal conductivity of TiNiCo<sub><i>x</i></sub>Sn samples is 3.19 W/(m·K). Therefore, Co doping can significantly reduce the <i>κ</i><sub>l</sub> values of TiNiCo<sub><i>x</i></sub>Sn (<i>x</i> = 0.01–0.05) samples. With the increase of Co doping amount <i>x</i>, n/p transition is observed in the TiNiCo<sub><i>x</i></sub>Sn samples, resulting in gradually reducing the conductivity and the power factor, and finally deteriorating the electrical transport performance, of which, the TiNiSn sample obtains the highest power factor of 29.56 W/(m·K<sup>2</sup>) at 700 K. The <i>ZT</i> value decreases with the Co doping amount <i>x</i> increasing, and the maximum <i>ZT</i> value of TiNiSn sample at 900 K is 0.48. This work shows that the thermal conductivity of TiNiSn can be effectively reduced by using the melt spinning process and magnetic Co doping.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Reference58 articles.

1. Yang S G, Lin X, He J S, Zhai L J, Cheng L, Lü M H, Liu H X, Zhang Y, Sun Z G 2023 Acta Phys. Sin. 72 228401
杨士冠, 林鑫, 何俊松, 翟立军, 程林, 吕明豪, 刘虹霞, 张艳, 孙志刚 2023 物理学报 72 228401

2. Luo F, Zhu C, Wang J, He X, Yang Z, Ke S, Zhang Y, Liu H, Sun Z G 2022 ACS Appl. Mater. Interfaces. 14 45503

3. Ma S F, Li C C, Wei P, Zhu W T, Nie X L, Sang X H, Zhang Q J, Zhao W Y 2020 J. Mater. Chem. A 8 4816

4. Shi L, Chen J, Zhang G, Li B 2012 Phys. Lett. A 376 978

5. Ouyang Y, Zhang Z, Li D, Chen J, Zhang G 2019 Ann. Phys. Berlin 531 4

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3