Preparation and temperature sensing properties of Tm<sup>3+</sup>, Yb<sup>3+</sup> co-doped Bi<sub>2</sub>WO<sub>6</sub> upconversion luminescent materials

Author:

Arepati Xiakeer,Wang Lin-Xiang,Li Qing,Bai Yun-Feng,Munire Maimaiti, ,

Abstract

Tm<sup>3+</sup> and Yb<sup>3+</sup>, with different concentrations, co-doped Bi<sub>2</sub>WO<sub>6</sub> up-conversion luminescence materials are prepared by high temperature solid state method. The microstructure, upconversion emission spectra, and optical temperature sensing properties of the synthesized powders are characterized and analyzed. The X-ray diffraction results show that the doping of Tm<sup>3+</sup> and Yb<sup>3+</sup> ions has little effect on the orthorhombic structure of Bi<sub>2</sub>WO<sub>6</sub> matrix material. Under the 980 nm excitation, the maximum emission intensity of Tm<sup>3+</sup> ions is obtained when the doping concentration of Tm<sup>3+</sup> and Yb<sup>3+</sup> are 1% and 6%, respectively. The intensities of four emission peaks of Tm<sup>3+</sup> in 1%Tm<sup>3+</sup>, 6%Yb<sup>3+</sup>:Bi<sub>2</sub>WO<sub>6</sub> sample increase with the excitation pump power increasing from 199 to 400 mW. With the excitation power of 199–400 mW, the sample light intensity<i> I</i> and the excitation power <i>P</i><sup><i>n</i></sup> show a linear relationship. The relationship between the excitation pump power and the emission intensity of Tm<sup>3+</sup> in this range is investigated. The four emission peaks of Tm<sup>3+</sup> at 478, 650, 685 and 705 nm correspond to the <i>n</i> values of 1.01, 1.34, 1.77 and 1.75, respectively, indicating that the above emission peaks are derived from two-photon absorption. Under 980 nm excitation (power 379 mW), when the temperature increases from 298 to 573 K, the thermal coupling energy levels of Tm<sup>3+</sup> in 1%Tm<sup>3+</sup>, 6%Yb<sup>3+</sup>:Bi<sub>2</sub>WO<sub>6</sub> samples produce 705 and 685 nm emission whose intensities are increased by 28.4 times and 31.6 times, respectively. The relationship between the fluorescence intensity ratio of the thermal coupling energy levels (<sup>3</sup>F<sub>3</sub>, <sup>3</sup>F<sub>2</sub>) of Tm<sup>3+</sup> in the sample and the temperature is fitted. The maximum absolute temperature sensitivity of the sample is 0.00254 K<sup>–1</sup> at 298 K, and the maximum relative temperature sensitivity is 0.00144 K<sup>–1</sup>. Under the same conditions, the relationship between the fluorescence intensity ratio of 705 and 650 nm produced by the non-thermal coupling energy level pair (<sup>3</sup>F<sub>3</sub>, <sup>1</sup>G<sub>4</sub>) and the temperature is fitted, and the maximum absolute temperature sensitivity is calculated to be 0.167 K<sup>–1</sup> at 573 K. The maximum relative temperature sensitivity is 0.0378 K<sup>–1</sup> at 298 K, which is 26 times higher than the relative maximum temperature sensitivity <i>S</i><sub>r</sub> of the thermal coupling level (<sup>3</sup>F<sub>3</sub>, <sup>3</sup>F<sub>2</sub>).

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference20 articles.

1. Ruiz D, Rosal B, Acebrón M, et al. 2017 Adv. Funct. Mater. 27 1604629

2. Zhou H L, Wu F, Zhang Z H, Zhang Y, Ye L H 2022 Chin. J. Lumin. 43 192
周慧丽, 吴锋, 张志宏, 张雁, 叶林华 2022 发光学报 43 192

3. Xie Y 2016 M. S. Thesis (Shenyang: Liaoning University) (in Chinese)
谢宇 2016 硕士学位论文 (沈阳: 辽宁大学)

4. Wu Z L, Wu H M, Tang L D, Li Y, Guo Y, Yao Z 2017 Acta Photonica Sin. 46 0916003
吴中立, 吴红梅, 唐立丹, 李煜, 郭宇, 姚震 2017 光子学报 46 0916003

5. Xing J H, Shang F, Chen G H 2021 J. Non-Cryst. Solids 569 120989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3