Dual-mode up/down-conversion optical thermometry of Pr<sup>3+</sup>-regulated Li<sub>0.9</sub>K<sub>0.1</sub>NbO<sub>3</sub>:Er<sup>3+</sup> phosphors

Author:

Jia Chao-Yang,Yang Xue,Wang Zhi-Gang,Chai Rui-Peng,Pang Qing,Zhang Xiang-Yu,Gao Dang-Li, ,

Abstract

Photothermal sensing is crucial in developing smart wearable devices. However, designing and synthesizing luminescent materials with suitable multi-wavelength emission and constructing multiple sets of probes in a single material system is a huge challenge for constructing sensitive temperature sensors with a wide temperature range. In this paper, Pr<sup>3+</sup>, Er<sup>3+</sup> single-doped and double-doped Li<sub>0.9</sub>K<sub>0.1</sub>NbO<sub>3</sub> phosphors are successfully prepared by high temperature solid phase method, and their structures, morphologies, excitation wavelengths and temperature-dependent fluorescence properties are characterized by XRD, SEM, fluorescence spectrometer and self-made heating device. Firstly, the photoluminescences of the synthesized series of samples are investigated. The results show that comparing with the single-doped Li<sub>0.9</sub>K<sub>0.1</sub>NbO<sub>3</sub>: Er<sup>3+</sup> sample, the up/down-conversion spectra of Pr<sup>3+</sup>, Er<sup>3+</sup> co-doped phosphors under 808 nm/380 nm excitation show that the green fluorescence emission of Er<sup>3+</sup> is enhanced. In addition, under 980 nm excitation, Pr<sup>3+</sup> can effectively regulate the fluorescence energy level population pathway, so that the electrons are more effectively arranged in the <sup>2</sup>H<sub>11/2</sub> and <sup>4</sup>S<sub>3/2</sub> energy levels in the excitation process. The red emission is weakened and the green emission is enhanced, which improves the signal resolution of the fluorescent material and has a significant influence on the optical temperature measurement. Secondly, the up-conversion fluorescence property of Er<sup>3+</sup> under 808 nm/980 nm laser excitation in Li<sub>0.9</sub>K<sub>0.1</sub>NbO<sub>3</sub>:Er<sup>3+</sup> and Li<sub>0.9</sub>K<sub>0.1</sub>NbO<sub>3</sub>:Pr<sup>3+</sup>,Er<sup>3+</sup> phosphors are investigated. The results show that the red and green fluorescence emissions of Er<sup>3+</sup> are two-photon processes. Finally, the up/down-conversion dual-mode temperature sensing properties of Er<sup>3+</sup> in Li<sub>0.9</sub>K<sub>0.1</sub>NbO<sub>3</sub>:Er<sup>3+</sup> and Li<sub>0.9</sub>K<sub>0.1</sub>NbO<sub>3</sub>:Pr<sup>3+</sup>, Er<sup>3+</sup> phosphors are investigated. It is found that both materials have good optical temperature measurement performances. The Pr<sup>3+</sup> doping optimizes the dual-mode optical temperature measurement performances of Li<sub>0.9</sub>K<sub>0.1</sub>NbO<sub>3</sub>:Er<sup>3+</sup> phosphors derived from the thermal coupling energy level of Er<sup>3+</sup> ions. In addition, the up/down-conversion fluorescence mechanism of Li<sub>0.9</sub>K<sub>0.1</sub>NbO<sub>3</sub>:Er<sup>3+</sup> and Li<sub>0.9</sub>K<sub>0.1</sub>NbO<sub>3</sub>:Er<sup>3+</sup>, Pr<sup>3+</sup> phosphors are proposed, and the enhanced green fluorescence by Pr<sup>3+</sup> co-doping is attributed to the energy transfer from Pr<sup>3+</sup> ions to Er<sup>3+</sup> ions, leading to the increase of green fluorescence level population and the decrease of red fluorescence level population of the Er<sup>3+</sup> ions. This new dual-mode optical temperature measurement material provides a material basis and optical temperature measurement technology for exploring other temperature measurement materials.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3