Method for detecting high-speed rail surface defects by photoacoustic signal

Author:

Sun Ming-Jian ,Cheng Xing-Zhen ,Wang Yan ,Zhang Xin ,Shen Yi ,Feng Nai-Zhang , ,

Abstract

Railway plays a major role in our daily life and national economy. In recent years, people payed much more attention to the safety operation of the high-speed train. In fact, the rail cracks originate from surface micro cracks will directly affect the safety of high-speed train. Therefore, it is vital to detect the rail surface micro cracks. Numerous nondestructive testing methods have been developed and applied in the detection of high speed rail cracks, such as magnetic particle testing, eddy current testing, and ultrasonic testing, etc. However, all the above conventional methods could only achieve crack information from the point of one-dimensional signal but not effective for the detection of surface micro cracks. A surface defect detection method based on photoacoustic (PA) signal from high speed rail is proposed soas to detect the surface crack more exactly and visually. Simulation and experiments are designed to validate the proposed method. Firstly, three models of high-speed rail with transverse crack, oblique crack, and scale stripping are established respectively. Meanwhile, the PA effect is simulated by finite element analysis and K-wave. Then, PA image of the rail surface is reconstructed by time inversion reconstruction algorithm, and some parameters, such as the center frequency of ultrasonic sensor and the laser power are also confirmed in further simulation. Subsequently, an experimental platform is established to collect the actual PA signal from a rail surface and to reconstruct PA images of the rail surface and shallow layer. The crack appearing in PA images are clear enough to show the receive crack information, such as sizes, propagating directions, and locations, which can be used to evaluate the rail states and decide processing scheme. It is proved that clear images of rail surface and shallow layer can be received by the detecting method of high-speed rail surface defects based on photoacoustic signal, and the surface cracks can be detected effectively.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference24 articles.

1. Zhao X Q, Wang W J, Zhong W, Liu Q Y, Zhu M H, Zhou Z R 2009 J. China Railway Soc. 2 84 (in Chinese) [赵雪芹, 王文健, 钟雯, 刘启跃, 朱旻昊, 周仲荣 2009 铁道学报 2 84]

2. Xie Y Y, Zhou S X, Xie J L, Liu Q F 2009 Engineer. Mech. 26 31 (in Chinese) [谢云叶, 周素霞, 谢基龙, 刘青峰 2009 工程力学 26 31]

3. Song Z L, Yamada T, Shitara H, Takemura Y 2011 J. Electromag. Anal. Appl. 3 546

4. Liu X, Lovett A, Dick T, Rapik S, Barkan Christopher P 2014 J. Transport. Engineer. 140 04014048

5. Zhang X, Feng N, Wang Y, Shen Y 2014 Appl. Acoust. 86 80

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3