Experimental study of the effects of two-photon detuning on slow light and light memory

Author:

Yan Yan ,Li Shu-Jing ,Tian Long ,Wang Hai ,

Abstract

Electromagnetically induced transparency (EIT) effect is an effective means to store light field into the atom ensemble. The extra noise introduced in the stored procedure can be suppressed greatly under the condition of large one-photon detuning and proper two-photon detuning. In this paper, we experimentally investigate the slow light and light storage in 87Rb vapor by using EIT effect, and study the effects of the two-photon detuning on light pulse delay and light memory at 650 MHz one-photon red detuning. In order to avoid some unwanted effects under the high optical depth condition, such as four-wave mixing, etc., the temperature of the atomic cell is controlled at 65 degrees Celsius. The experimental results show that the delay and the retrieval signals are significant in a two-photon detuning range from 0 to 0.5 MHz. The pulse delay decreases with the increase of two-photon detuning. The delay is 0.36 ups at two-photon resonance, and it is 0.07 ups at 1 MHz two-photon detuning. We simulate the delayed light pulse by using a three-level -type EIT model. The shapes of the measured slow light are in agreement with the theoretical results. The retrieval signals are observed at different two-photon detunings. The shapes of the retrieval pulses change with the two-photon detuning. The shape variations of the retrieval pulses cannot be explained by the three-level EIT theoretical model. By considering the atomic Zeeman sublevels interacting with the left-circular and right-circular polarized components of probe and coupling fields, multiple -type EIT systems will be formed. The interference between the retrieval signals from multiple EIT subsystems causes the shape distortions of retrieval pulses. The retrieval efficiency is measured as a function of two-photon detuning. The retrieval efficiency oscillates, and multiple peaks appear with the increase of two-photon detuning. The first peak appears at two-photon resonance, and the second peak appears at 0.48 MHz two-photon detuning. Finally, we measure the retrieval efficiency as a function of the coupling power at 0.48 MHz two-photon detuning. The optimal retrieval efficiency reaches 25% when the coupling power is 100 mW. These results provide experimental reference for the quantum memory of continuous variables in the hot atom ensemble.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3