Improvement on reflectivity of tunable photonic band gap with spontaneous generated coherence

Author:

Yang Liu ,Gao Zhong-Xing ,Xue Bing ,Zhang Yong-Gang ,Cai Yong-Mao , , ,

Abstract

The photonic band gap is a spectral range which cannot propagate in a periodic optical nanostructure, that is, the structure itself has a “forbidden band”. It has been successfully applied to the filters, amplifiers, mixers, etc. As is well known, dynamically tunable photonic band gaps in cold atomic lattices are of great importance in various research fields. However, the photonic band gaps of a traditional photonic crystal are non-tunable because the periodic structure is determined once the photonic crystal is grown. On the other hand, a majority of previous researches focused on improving the reflectivity of photonic band gap, which can only keep approaching to 1. Due to the action of the vacuum of the radiation field, near-degenerate lower level has an additional coherence term, the spontaneously generated coherence term. In this paper, we consider a three-level ∧-type atomic system driven by a strong coherent field, a weak coherent field and an incoherent pump, in which the two ground states are of hyperfine structure. The one-dimensional photonic band gaps are formed by cold atoms trapped in a one-dimensional-ordered optical lattice and this system may create two photonic band gaps (PBGs). The trapped cold atoms have a Gaussian density distribution in each period as determined by the optical potential depth and the average atomic temperature. We investigate in detail how the reflectivities of the two PBGs are influenced by the coherent effect of spontaneously generated coherence. Then, we find that the reflectivities of the two band gaps can be significantly improved by the spontaneously generated coherence. The reflectivities of such two band gaps can be dynamically manipulated by varying the intensity of incoherent driving field and the relative phase between the probe field and the coupling field, which cannot be realized in a conventional ∧-type atomic system. Besides, by adjusting the parameters appropriately, the reflectivities of these two band gaps can be higher than 1, which is because probe field gain stems from the spontaneously generated coherence. In the future, photonic transport properties can be investigated in the three-dimensional atomic lattices and this work is meaningful for the optical routing, photodiode and transistor.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3