Double ellipsoid model for conductivity effective mass along [110] orientation in (100) Si-based strained p-channel metal-oxide-semiconductor

Author:

Song Jian-Jun ,Bao Wen-Tao ,Zhang Jing ,Tang Zhao-Huan ,Tan Kai-Zhou ,Cui Wei ,Hu Hui-Yong ,Zhang He-Ming , ,

Abstract

The performance of a Si metal-oxide-semiconductor field-effect transistor can be enhanced effectively by the strain technology and the orientation engineering. For example, the [110] direction is usually used as the channel direction in the Si p-channel metal-oxide-semiconductor (PMOS) on 100 oriented substrate. While SunEdison company rotates the channel direction 45 degrees to the [100] direction, its hole mobility is 1.15 times larger than the hole mobility of the former.The orientation engineering is based on the anisotropy of the hole effective mass along different directions. The enhancement of carrier mobility naturally occurs when we choose the direction with the smaller carrier effective mass as the channel direction.However, according to the reported results in the literature, the hole effective mass values along the [110] and [100] orientation are about 0.6m0 and 0.29m0, respectively. The former is twice larger than the latter, which cannot explain that the experimental result increases 1.15 times.We find that the effective mass values along both the long axis and the short axis should be taken into consideration, and the value of 0.6m0 can only represent the long axis term by observing the equivalent energy diagram of the first sub-band in Si PMOS.In view of this, the double ellipsoid model is given for the conductivity effective mass along the [110] direction in (100) Si PMOS, which explains the reason why the hole mobility along the [100] direction is 1.15 times larger than that along the [110] direction in Si PMOS. And then, based on the E-k relation of the inversion layer in Si-based strained PMOS, we study the conductivity effective mass along the [110] direction in (100) Si-based strained PMOS by the above method.The results show that 1) the [110] oriented hole conductivity effective mass of biaxially strained Si PMOS can be calculated directly by its spherical equivalent energy diagram; 2) in the case of biaxially strained Si1-xGex PMOS, its conductivity effective mass needs to be calculated by the double ellipsoid method; 3) the [110] oriented hole conductivity effective mass of uniaxially strained Si PMOS should be solved approximately by two different sizes of ellipsoid.Our valid models can provide the valuable references for studying and designing the Si-based strained PMOS device.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference13 articles.

1. Cai W L, Takenaka M, Takagi S 2014 J. Appl. Phys. 115 094509

2. Wu W R, Liu C, Sun J B, Yu W J, Wang X, Shi Y, Zhao Y 2014 IEEE Electron Dev. Lett. 35 714

3. Song J J, Yang C, Wang G Y, Zhou C Y, Wang B, Hu H Y, Zhang H M 2012 Jpn. J. Appl. Phys. 51 104301

4. EngSiew K A, Sohail I R 2013 J. Comput. Theor. Nanos. 10 1231

5. Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2007 Chin. Phys. 16 3827

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3