Experiment on similarity between wake flow field and electromagnetic scattering characteristic of the hypersonic model

Author:

Ma Ping ,Shi An-Hua ,Yang Yi-Jian ,Yu Zhe-Feng ,Liang Shi-Chang ,Huang Jie ,

Abstract

The plasma sheath and wake flow of the hypersonic vehicle can affect the electromagnetic scattering characteristics of the reentry targets when they pass through the earth atmosphere at high speed. In order to study the similarity between the wake and the characteristic of the model launched at high velocity, the simulation experiments on the electromagnetic scattering characteristics of the spherical models made of Al2O3 and their wakes are carried out under the same binary scaling parameters in the ballistic range. The models are launched by the two-stage light-gas gun. The diameters of the models are 8 mm, 10 mm, 12 mm and 15 mm, respectively, while the pressures of the target chamber are 6.3 kPa, 5.0 kPa, 4.2 kPa and 3.3 kPa, respectively. The shock standoff distance is obtained by the shadow graph system. The electron density distribution of the wake is measured by the electron density measurement system. The RCS distribution of the wake and the model are acquired by X band monostatic radars, whose visual angle is 40. The results show that the shock standoff distance gradually increases with the increasing of the model dimension under the conditions of the same velocity and binary scaling parameters. The wake electron densities of different models are similar in their variation trends and orders of magnitude. The wake flow field of the different models with high velocity are the same as the results predicted by the double scale laws. The RCS distributions and total RCS of the wake of the models are different from each other. The electromagnetic scattering properties of the wake flow field of the various models do not conform with the predicted results obtained from the double scale law. The electromagnetic scattering energy is distributed over the regions of the models made up of aluminium oxide and the wake zones. There appears to be one center of the electromagnetic scattering energy in the area of the model coated with flow field, while several centers emerge in the region of the wake. The measuring signals of the RCS of the models show a random distribution, because the amplitude variation of the RCS and the frequency change of the RCS are random. The total RCS of the model increases with the increase of the model dimension, but the variation range of ripple frequency decreases with the increase of the model dimension.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference24 articles.

1. Huang Y, Chen Z S, Xu J W 2008 Ship. Elec. Counter. 31 969 (in Chinese) [黄勇, 陈宗胜, 徐记伟 2008 舰船电子对抗 31 969]

2. Wu J M, Gao B Q 1997 Chin. J. Rad. Sci. 12 26 (in Chinese) [吴建明, 高本庆 1997 电波科学学报 12 26]

3. Zhu F, L Q Z 2008 Modern. Radar. 30 14 (in Chinese) [朱方, 吕琼之 2008 现代雷达 30 14]

4. Zhou C, Zhang X K, Zhang C X, Wu G C 2014 Modern. Radar. 36 83 (in Chinese) [周超, 张小宽, 张晨新, 吴国成 2014 现代雷达 36 83]

5. Niu J Y, Yu M 1999 Acta Mech. Sin. 31 434 (in Chinese) [牛家玉, 于明 1999 力学学报 31 434]

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3