Experimental investigation on all-target electromagnetic scattering characteristics of hypervelocity HTV2-like flight model

Author:

Ma Ping,Han Yi-Ping,Zhang Ning,Tian De-Yang,Shi An-Hua,Song Qiang, ,

Abstract

According to the requirements for target detection and recognition of hypervelocity vehicles in near space, the simulation and measurement of corresponding electromagnetic scattering characteristics of non-uniform plasma generated by hypervelocity targets are conducted. A numerical calculation method with dynamic plasma parameters is developed and hypervelocity HTV2-like models launched by the ballistic ranges are used to simulate complex shape target flying at a hypervelocity velocity. The high-precision shadow imaging systems and radar measurement systems of the ballistic range are used to measure the model postures, the electromagnetic scattering characteristics of the whole targets and their flow fields in both C band and X band. The experimental measurement results of the radar cross section (RCS) of the models and their flow fields under different experimental conditions are obtained. The results show that the numerical simulation methods of unsteady high-temperature ionized air flow can be used to simulate the unsteady thermal chemical flow fields around the head and body of the simplified hypervelocity HTV2-like flight models. The electromagnetic scattering characteristics of the models and their plasma sheath differ by more than one order of magnitude under different experimental conditions. The total RCS of the model’s wake in the C band is much smaller than that of the model, and the total RCS of the model’s wake in the X band is significantly enhanced. The attitude angles of the models have great influence on their electromagnetic scattering characteristics and their RCSs with different attitude angles can differ by one order of magnitude. The electromagnetic scattering energy of the model in the C band is distributed mainly around the targets and their flow fields surrounding them. The X band electromagnetic scattering energy of the model is distributed mainly in the regions around the targets, surrounding flow fields and the wake flow fields. According to the experimental conditions of the ballistic range, the numerical simulation analyses of the electromagnetic scattering characteristics of the models and flow fields around them are carried out, and the maximum error between simulation and experimental results is less than 4 dB, verifying the effectiveness of the modeling methods of simulating electromagnetic scattering characteristics of non-uniform plasma coated targets.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference24 articles.

1. Akey N D, Cross A E 1970 NASA-TN-D-5615 [1970-02-01]

2. Dirsa E F 1960 Pro. IRE 48 703

3. Golden K E, Pridmore D C, Stewart G E 1970 NASA 19710011626 (Washington: NASA LANGLEY Research Center)

4. Wood G E, Asmar S W, Rebold T A 1997 TDA Progress Report 42 131

5. Bachynski M P, Gibbs B W 1970 NASA 19710011649 (Washington: NASA LANGLEY Research Center)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3