Study on resonance frequency of doping silicon nano-beam by theoretical model and molecular dynamics simulation

Author:

Ma Xia ,Wang Jing ,

Abstract

With the rapid development of nanoelectromechanical system technologies, silicon nanostructures have attracted considerable attention for the remarkable mechanical properties. A number of studies have been made on the mechanical properties through theoretical analysis, atomistic or molecular dynamics and experiments. In this paper, the resonance frequency of the doping silicon nano-beam is investigated by a theoretical model based the semi-continuum approach to achieve the goal of accurately capturing the atomistic physics and retaining the efficiency of continuum model. The temperature dependence of the resonance frequency of the nanostructure is important for application design, which is considered by the Keating anharmonic model used to describe the strain energy at finite temperature. The resonance frequencies are also simulated by the molecular dynamics at different temperatures. The studies indicate that the resonance frequency of the P doped silicon nano-beam is influenced by the size, the doping concentration and the temperature. The results show that the resonant frequency decreases with the increase of the length of the beam, and increases with the increase of the doping concentration of the silicon nano-beam. The resonant frequency of silicon nano-beam decreases with the increase of temperature, but the changes of the resonant frequency is not obvious. The doping concentration has a little effect on the resonance frequency of the silicon nano-beam. The conclusion can be drawn that neither the effect of doping concentration nor the effect of temperature on resonant frequency of the silicon nano-beam is obvious, the size is a major factor influencing the resonance frequency of the silicon nano-beam.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3