High-performance AlGaN/GaN MIS-HEMT device based on in situ plasma nitriding and low power chemical vapor deposition Si3N4 gate dielectrics

Author:

Li Shu-Ping ,Zhang Zhi-Li ,Fu Kai ,Yu Guo-Hao ,Cai Yong ,Zhang Bao-Shun , ,

Abstract

Gallium nitride (GaN)-based high electron mobility transistor (HEMT) power devices have demonstrated great potential applications due to high current density, high switching speed, and low ON-resistance in comparison to the established silicon (Si)-based semiconductor devices. These superior characteristics make GaN HEMT a promising candidate for next-generation power converters. Many of the early GaN HEMTs are devices with Schottky gate, which suffer a high gate leakage and a small gate swing. By inserting an insulator under gate metal, the MIS-HEMT is highly preferred over the Schottky-gate HEMT for high-voltage power switche, owing to the suppressed gate leakage and enlarged gate swing. However, the insertion of the gate dielectric creates an additional dielectric/(Al) GaN interface that presents some great challenges to AlGaN/GaN MIS-HEMT, such as the threshold voltage (Vth) hysteresis, current collapse and the reliability of the devices. It has been reported that the poor-quality native oxide (GaOx) is detrimental to the dielectric/(Al) GaN interface quality that accounted for the Vth instability issue in the GaN based device. Meanwhile, it has been proved that in-situ plasma pretreatment is capable of removing the surface native oxide. On the other hand, low power chemical vapor deposition (LPCVD)-Si3N4 with free of plasma-induced damage, high film quality, and high thermal stability, shows great potential applications and advantages as a choice for the GaN MIS-HEMTs gate dielectric and the passivation layer. In this work, an in-situ pre-deposition plasma nitridation process is adopted to remove the native oxide and reduce surface dangling bonds prior to LPCVD-Si3N4 deposition. The LPCVD-Si3N4/GaN/AlGaN/GaN MIS-HEMT with a high-quality LPCVD-Si3N4/GaN interface is demonstrated. The fabricated MIS-HEMT exhibits a very-low Vth hysteresis of 186 mV at VG-sweep=(-30 V, +24 V), a high breakdown voltage of 881 V, with the substrate grounded. The hysteresis of our device at a higher positive end of gate sweep voltage (VG +20 V) is the best to our knowledge. Switched off after an off-state VDS stress of 400 V, the device has a dynamic on-resistance Ron only 36% larger than the static Ron.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3