Author:
Wang Shu ,Ren Yi-Chong ,Rao Rui-Zhong ,Miao Xi-Kui , , ,
Abstract
There has been aroused much interest in quantum metrology such as quantum radar, due to its applications in sub-Raleigh ranging and remote sensing. For quantum radar, the atmospheric absorption and diffraction rapidly degrade any actively transmitted quantum states of light, such as N00N and MM' states. Thus for the high-loss condition, the optimal strategy is to transmit coherent state of light, which can only provide sensitivity at the shot-noise limit but suffer no worse loss than the linear Beer's law for classical radar attenuation.
In this paper, the target detection theory of quantum interferometric radar in the presence of photon loss is thoroughly investigated with the model of Mach-Zehnder interferometer, and the dynamic evolution of the quantum light field in the detecting process is also investigated. We utilize the parity operator to detect the return signal of quantum interferometric radar with coherent-state source. Then we compare the detection result of quantum radar with that of classical radar, which proves that the quantum radar scheme that employs coherent radiation sources and parity operator detection can provide an N-fold super-resolution, which is much below the Rayleigh diffraction limit; besides, the sensitivity of this scheme can also achieve the shot-noise-limit.
Also, we analyze the effect of atmospheric attenuation on the performance of quantum radar, and find that the sensitivity is seriously influenced by atmospheric attenuation:only when the reference beam and the detection beam have the same transmissivity, will the sensitivity increase monotonically with increasing the photon number per pulse N, otherwise it first increases and then decreases with increasing N. Further, the sensivity is directly proportional to 1/N for the first case.
In conclusion, we investigate the effects of atmospheric absorption on the resolution and sensitivity of quantum radar, and find that one can overcome the harmful effects of atmospheric attenuation by adjusting the transmissivity of reference beam to the atmospheric transmittance.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference36 articles.
1. Xiao H T, Liu K, Fan H Q 2014 J. Nat. Univ. Def. Technol. 36 140 (in Chinese) [肖怀铁, 刘康, 范红旗 2014 国防科技大学学报 36 140]
2. Xu S L, Hu Y H, Zhao N X, Wang Y Y, Li L, Guo L R 2015 Acta Phys. Sin. 64 154203 (in Chinese) [徐世龙, 胡以华, 赵楠翔, 王阳阳, 李乐, 郭力仁 2015 物理学报 64 154203]
3. Jiang T, Sun J 2014 J. CAEIT 9 10 (in Chinese) [江涛, 孙俊 2014 中国电子科学研究院学报 9 10]
4. Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330
5. Gao Y, Anisimov P M, Wildfeuer C F, Luine J, Lee H, Dowling J P 2010 J. Opt. Soc. Am. B 27 170
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献