Influence of atmosphere attenuation on quantum interferometric radar

Author:

Wang Shu ,Ren Yi-Chong ,Rao Rui-Zhong ,Miao Xi-Kui , , ,

Abstract

There has been aroused much interest in quantum metrology such as quantum radar, due to its applications in sub-Raleigh ranging and remote sensing. For quantum radar, the atmospheric absorption and diffraction rapidly degrade any actively transmitted quantum states of light, such as N00N and MM' states. Thus for the high-loss condition, the optimal strategy is to transmit coherent state of light, which can only provide sensitivity at the shot-noise limit but suffer no worse loss than the linear Beer's law for classical radar attenuation. In this paper, the target detection theory of quantum interferometric radar in the presence of photon loss is thoroughly investigated with the model of Mach-Zehnder interferometer, and the dynamic evolution of the quantum light field in the detecting process is also investigated. We utilize the parity operator to detect the return signal of quantum interferometric radar with coherent-state source. Then we compare the detection result of quantum radar with that of classical radar, which proves that the quantum radar scheme that employs coherent radiation sources and parity operator detection can provide an N-fold super-resolution, which is much below the Rayleigh diffraction limit; besides, the sensitivity of this scheme can also achieve the shot-noise-limit. Also, we analyze the effect of atmospheric attenuation on the performance of quantum radar, and find that the sensitivity is seriously influenced by atmospheric attenuation:only when the reference beam and the detection beam have the same transmissivity, will the sensitivity increase monotonically with increasing the photon number per pulse N, otherwise it first increases and then decreases with increasing N. Further, the sensivity is directly proportional to 1/N for the first case. In conclusion, we investigate the effects of atmospheric absorption on the resolution and sensitivity of quantum radar, and find that one can overcome the harmful effects of atmospheric attenuation by adjusting the transmissivity of reference beam to the atmospheric transmittance.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference36 articles.

1. Xiao H T, Liu K, Fan H Q 2014 J. Nat. Univ. Def. Technol. 36 140 (in Chinese) [肖怀铁, 刘康, 范红旗 2014 国防科技大学学报 36 140]

2. Xu S L, Hu Y H, Zhao N X, Wang Y Y, Li L, Guo L R 2015 Acta Phys. Sin. 64 154203 (in Chinese) [徐世龙, 胡以华, 赵楠翔, 王阳阳, 李乐, 郭力仁 2015 物理学报 64 154203]

3. Jiang T, Sun J 2014 J. CAEIT 9 10 (in Chinese) [江涛, 孙俊 2014 中国电子科学研究院学报 9 10]

4. Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

5. Gao Y, Anisimov P M, Wildfeuer C F, Luine J, Lee H, Dowling J P 2010 J. Opt. Soc. Am. B 27 170

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3