Author:
Xu Shi-Long ,Hu Yi-Hua ,Zhao Nan-Xiang ,Wang Yang-Yang ,Li Le ,Guo Li-Ren , ,
Abstract
With the development of quantum radar technology, the interaction of photons and targets has gradually become a new hotspot. Quantum radar cross section (QRCS) is an important parameter fon describing the visibility of the target illuminated by light quantum. #br#According to the conservation of energy and the finite element method, the expression of QRCS derived by Marco Lanzagorta is extended, which can be applied to QRCS calculations of non-planar convex targets. As the surface elements of the target have different incident and scattering angles, the integral equation can give a higher calculation accuracy and is suitable for bistatic or multistatic situations. #br#The distribution pattern of the target’s atoms is varied. Using the interatomic distance as the only parameter to describe the atomic distribution is inaccurate. In this paper the metal atomic lattice is considered. Simulation of the QRCS that is composed of three kinds of metal atomic lattices (face-centered cubic, body-centered cubic and hexagonal close-packed lattices) with different atomic distributions has been made. The hexagonal close-packed lattice with asymmetrical distribution for different azimuth angles is discussed. Simulation result shows that with different arrangement of atoms, the main lobe of the target QRCS is basically unchanged, while the quantum side-lobes of the target with sparsely arranged atoms are much more significant. This reveals a different characteristic of QRCS, and provides theoretic basis for quantum radar and stealth technique researches.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference16 articles.
1. Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (UK: Cambridge University Press) p2
2. Matthew J. B, Ram M. Narayanan, Marco Lanzagorta 2014 Radar Sensor Technology XVIII, Baltimore Maryland USA, May 05, 2014 p90770T-1
3. Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S, Shapiro J H 2008 Phys. Rev. Lett. 101 253601
4. Giovannetti V, Lloyd S, Maccone L 2004 Science 360 1330
5. Lopaeva E D, I. Berchera R, Degiovanni I P, Olivares S, Brida G, Genovese M 2013 Phys. Rev. Lett. 110 153603
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献