1,3-Thiazole as Suitable Antenna Ligand for Lanthanide Photoluminescence in [LnCl3(thz)4]·0.5thz, Ln = Sm, Eu, Gd, Tb, Dy

Author:

Dannenbauer Nicole1,Kuzmanoski Ana2,Feldmann Claus2,Müller-Buschbaum Klaus1

Affiliation:

1. Julius-Maximilians-University, Institute for Inorganic Chemistry, Am Hubland, 97074 Würzburg, Germany

2. Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry, Engesserstraße 15, 76131 Karlsruhe, Germany

Abstract

The series of luminescent monomeric lanthanide thiazole complexes [LnCl3(thz)4]⋅0.5thz (Ln = Sm, Eu, Gd, Tb, Dy; thz=1,3-thiazole) has been synthesised and characterised by powder and singlecrystal X-ray diffraction, IR and photoluminescence spectroscopy, DTA/TG as well as elemental analysis. The colourless compounds exhibit photoluminescence in the visible region with varying quantum efficiencies up to QY = 48% for [TbCl3(thz)4]⋅0.5thz. Both, the lanthanide ions as well as the thiazole ligand contribute to the luminescence. Excitation can be achieved via intra-4 f transitions and by exciting the ligand, emission is observed mainly from the lanthanide ions again by 4 f transitions. Thiazole can transfer energy to the lanthanide ions, which further feeds the lanthanide emission by an efficient antenna effect even at room temperature. The lanthanide ions show pentagonalbipyramidal coordination by three chloride anions and four N atoms of 1,3-thiazole, which leads to a strong 5D07F4 transition for europium. Significant differences arise as compared to thiophene complexes because no sulphur atom is involved in the metal coordination, as the thiazole ligand is solely coordinated via its nitrogen function.

Publisher

Walter de Gruyter GmbH

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3