3D Human Activity Classification with 3D Zernike Moment Based Convolutional, LSTM-Deep Neural Networks

Author:

Özbay Erdal,Çınar Ahmet,Özbay Feyza Altunbey

Abstract

In this paper, we propose a method for classification 3D human activities using the complementarity of CNNs, LSTMs, and DNNs by combining them into one unified architecture called CLDNN. Our approach is based on the prediction of 3D Zernike Moments of some relevant joints of the human body through Kinect using the Kinect Activity Recognition Dataset. KARD includes 18 activities and each activity consists of real-world point clouds that have been carried out 3 times by 10 different subjects. We introduce the potential for the 3D Zernike Moment feature extraction approach via a 3D point cloud for human activity classification, and the ability to be trained and generalized independently from datasets using the Deep Learning methods. The experimental results obtained on datasets with the proposed system has correctly classified 96.1% of the activities. CLDNN has been shown to provide a 5% relative improvement over LSTM, the strongest of the three individual models.

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3