An NCA-based Hybrid CNN Model for Classification of Alzheimer’s Disease on Grad-CAM-enhanced Brain MRI Images

Author:

ALTUNBEY ÖZBAY Feyza1ORCID,ÖZBAY Erdal1ORCID

Affiliation:

1. FIRAT ÜNİVERSİTESİ

Abstract

Alzheimer’s, one of the most prevalent varieties of dementia, is a fatal neurological disease for which there is presently no known cure. Early diagnosis of such diseases and classification with computer-aided systems are of great importance in determining the most appropriate treatment. Imaging the soft tissue of the brain with Magnetic Resonance Imaging (MRI) and revealing specific findings is the most effective method of Alzheimer’s diagnosis. A few recent studies using Deep Learning (DL) to diagnose Alzheimer’s Disease (AD) with brain MRI scans have shown promising results. However, the fundamental issue with DL architectures like CNN is the amount of training data that is required. In this study, a hybrid CNN method based on Neighborhood Component Analysis (NCA) is proposed, which aims to classify AD over brain MRI with Machine Learning (ML) algorithms. According to the classification results, DenseNet201, EfficientNet-B0, and AlexNet pre-trained CNN architectures, which are 3 architectures that give the best results as feature extractors, were used as hybrids among 10 different DL architectures. By means of these CNN architectures, the features trained on the dataset and the features obtained by Gradient-weighted Class Activation Mapping (Grad-CAM) are concatenated. The NCA method has been used to optimize all concatenated features. After the stage, the optimized features have been classified with KNN, Ensemble, and SVM algorithms. The proposed hybrid model achieved 99.83% accuracy, 99.88% sensitivity, 99.92% specificity, 99.83% precision, 99.85% F1-measure, and 99.78% Matthews Correlation Coefficient (MCC) results using the Ensemble classifier for the 4-class classification of AD.

Publisher

Firat Universitesi

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3