A Region-Based Efficient Network for Accurate Object Detection

Author:

Guan Yurong,Aamir Muhammad,Hu Zhihua,Abro Waheed Ahmed,Rahman Ziaur,Dayo Zaheer Ahmed,Akram Shakeel

Abstract

Object detection in images is an important task in image processing and computer vision. Many approaches are available for object detection. For example, there are numerous algorithms for object positioning and classification in images. However, the current methods perform poorly and lack experimental verification. Thus, it is a fascinating and challenging issue to position and classify image objects. Drawing on the recent advances in image object detection, this paper develops a region-baed efficient network for accurate object detection in images. To improve the overall detection performance, image object detection was treated as a twofold problem, involving object proposal generation and object classification. First, a framework was designed to generate high-quality, class-independent, accurate proposals. Then, these proposals, together with their input images, were imported to our network to learn convolutional features. To boost detection efficiency, the number of proposals was reduced by a network refinement module, leaving only a few eligible candidate proposals. After that, the refined candidate proposals were loaded into the detection module to classify the objects. The proposed model was tested on the test set of the famous PASCAL Visual Object Classes Challenge 2007 (VOC2007). The results clearly demonstrate that our model achieved robust overall detection efficiency over existing approaches using fewer or more proposals, in terms of recall, mean average best overlap (MABO), and mean average precision (mAP).

Funder

Science and Technology Research Plan Project of Hubei Provincial Department of Education, China

National Statistical Science Research Project in 2020, China

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An enhanced algorithm for object detection based on generative adversarial structure;Engineering Applications of Artificial Intelligence;2024-07

2. MRU-Net: A remote sensing image segmentation network for enhanced edge contour Detection;KSII Transactions on Internet and Information Systems;2023-12-31

3. Application of the YOLOv6 Combining CBAM and CIoU in Forest Fire and Smoke Detection;Forests;2023-11-17

4. Research on detecting moving targets with an improved Kalman filter algorithm;KSII Transactions on Internet and Information Systems;2023-09-30

5. CenterNet Based on Diagonal Half-length and Center Angle Regression for Object Detection;KSII Transactions on Internet and Information Systems;2023-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3