Joule Heating and Dissipation Effects on Magnetohydrodynamic Couple Stress Nanofluid Flow over a Bidirectional Stretching Surface

Author:

Tarakaramu Nainaru,Narayana Panyam Venkata Satya,Babu Dondu Harish,Sarojamma Ganganapalli,Makinde Oluwole Daniel

Abstract

This work examines the effects of non-linear thermal radiation and Joule heating on MHD three-dimensional visco-elastic nanofluid flow due to a surface stretching in lateral directions. A coupled nonlinear differential system is generated from the boundary layer equations by using self-similarity variables and is then solved numerically by using most powerful shooting technique with Runge Kutta method of fourth order. The computational results for the flow variables are plotted graphically and are discussed in detail for various governing parameters that emerged in the analysis. It is observed that the momentum of the visco elastic nanofluid is better than that of a viscous fluid. Thicker thermal and concentration boundary layers are formed for increasing nonlinear thermal radiation and temperature ratio parameters. Also the results are in very good agreement with the outcomes available in the literature as a particular case. This model may play a significant role in the field of manufacturing and engineering applications.

Publisher

International Information and Engineering Technology Association

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3