Enhanced heat transfer analysis on Ag-Al$$_{2}$$O$$_{3}$$/water hybrid magneto-convective nanoflow

Author:

Ragavi M.,Poornima T.

Abstract

AbstractThe primary goal of this investigation is to examine the heat and flow characteristics of a hybrid nanofluid consisting of silver (Ag) and aluminum oxide (Al$$_{2}$$ 2 O$$_{3})$$ 3 ) nanoparticles over an unsteady radially stretching sheet embedded in porous medium. The investigation is conducted under the influence of several key parameters, namely joule heating, viscous dissipation, porous, slip, and suction. The technique of similarity transformations is used to transform the governing system of PDEs into nonlinear ODEs and the bvp4c solver is used to solve them numerically. The present study examines the influence of sphere and platelet shape nanoparticles on the temperature and velocity profiles. The outcomes are discussed through graphs and tables. A rise in the porous, slip, and suction parameters makes the velocity profile decrease gradually. The temperature escalates when Biot number, magnetic parameter, and Eckert number increase. As compared to sphere shapes, platelet-shaped nanoparticles exhibit the greatest heat transfer and flow. Results reveal that by using Ag-Al$$_{2}$$ 2 O$$_{3}$$ 3 /H$$_{2}$$ 2 O hybrid nanofluid with a volume fraction of 5%, the heat transfer enhancement of platelet shape nanoparticles increased by 11.88% than sphere-shaped nanoparticles. Overall, the platelet shape of nanoparticles offers distinctive advantages in various engineering applications, primarily due to their large surface area, anisotropic properties, and tunable surface chemistry. These properties make them versatile tools for improving the performance of materials and systems in engineering fields. The findings can contribute to the design and optimization of nanofluid-based systems in various engineering applications, such as heat exchangers, microfluidics, and energy conversion devices.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3