Handwritten Gurmukhi Digit Recognition System for Small Datasets

Author:

Singh Gurpartap,Agrawal Sunil,Sohi Balwinder Singh

Abstract

In the present study, a method to increase the recognition accuracy of Gurmukhi (Indian Regional Script) Handwritten Digits has been proposed. The proposed methodology uses a DCNN (Deep Convolutional Neural Network) with a cascaded XGBoost (Extreme Gradient Boosting) algorithm. Also, a comprehensive analysis has been done to apprehend the impact of kernel size of DCNN on recognition accuracy. The reason for using DCNN is its impressive performance in terms of recognition accuracy of handwritten digits, but in order to achieve good recognition accuracy, DCNN requires a huge amount of data and also significant training/testing time. In order to increase the accuracy of DCNN for a small dataset more images have been generated by applying a shear transformation (A transformation that preserves parallelism but not length and angles) to the original images. To address the issue of large training time only two hidden layers along with selective cascading XGBoost among the misclassified digits have been used. Also, the issue of overfitting is discussed in detail and has been reduced to a great extent. Finally, the results are compared with performance of some recent techniques like SVM (Support Vector Machine) Random Forest, and XGBoost classifiers on DCT (Discrete Cosine Transform) and DWT (Discrete Wavelet Transform) features obtained on the same dataset. It is found that proposed methodology can outperform other techniques in terms of overall rate of recognition.

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3