Affiliation:
1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
Abstract
You only look once (YOLO) is one of the most efficient target detection networks. However, the performance of the YOLO network decreases significantly when the variation between the training data and the real data is large. To automatically customize the YOLO network, we suggest a novel transfer learning algorithm with the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter and Gaussian mixture probability hypothesis density (GM-PHD) filter. The proposed framework can automatically customize the YOLO framework with unlabelled target sequences. The frames of the unlabelled target sequences are automatically labelled. The detection probability and clutter density of the SMC-PHD filter and GM-PHD are applied to retrain the YOLO network for occluded targets and clutter. A novel likelihood density with the confidence probability of the YOLO detector and visual context indications is implemented to choose target samples. A simple resampling strategy is proposed for SMC-PHD YOLO to address the weight degeneracy problem. Experiments with different datasets indicate that the proposed framework achieves positive outcomes relative to state-of-the-art frameworks.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献