Abstract
The boom of global economy has caused an explosive growth in the issuance and use of financial instruments. Traditionally, the financial instruments are recognized and classified manually, which increases the burden of financial staff and consumes lots of financial time. To solve the problems, this paper designs a convolutional neural network (CNN) for classification of financial instruments, covering components like traditional CNN, shallow convolutional layers, and cropping structure. Then, the momentum weight update was combined with weight attenuation to accelerate the model learning. In addition, the authors designed a preprocessing method for rapid pixel-level adjustment of financial instruments, enabling the proposed CNN to classify financial instruments of various sizes. Experiments show that our CNN can identify various financial instruments, and classify them at an accuracy as high as 96%.
Funder
Chongqing Social Science Fund Project
Science and Technology Project of Chongqing Municipal Education Commission
Publisher
International Information and Engineering Technology Association
Subject
Electrical and Electronic Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献