Research on Image Classification Algorithm Based on Convolutional Neural Network

Author:

Luo Lihua

Abstract

Abstract Nowadays, we are in the information age. Pictures carry a lot of information and play an indispensable role. For a large number of images, it is very important to find useful image information within the effective time. Therefore, the excellent performance of the image classification algorithm has certain influence factors on the result of image classification. Image classification is to input an image, and then use a certain classification algorithm to determine the category of the image. The main process of image classification: image preprocessing, image feature extraction and classifier design. Compared with the manual feature extraction of traditional machine learning, the convolutional neural network under the deep learning model can automatically extract local features and share weights. Compared with traditional machine learning algorithms, the image classification effect is better. This paper focuses on the study of image classification algorithms based on convolutional neural networks, and at the same time compares and analyzes deep belief network algorithms, and summarizes the application characteristics of different algorithms.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference17 articles.

1. Research on Image Classification Based on Convolutional Neural Network;Cheng,2018

2. Research on image classification method based on convolutional neural network [J];Li;Neural Computing and Applications,2020

3. Research on Image Classification Method Based on Improved Multi-channel Convolutional Neural Network Model [J];Zhou,2019

4. Research on Garbage Image Classification Method Based on Convolutional Neural Network [J];Tang;International Journal of Computer Applications Technology and Research,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning for Image Classification: A Review;Lecture Notes in Electrical Engineering;2024

2. Assessment of Chlorophyll Content in Leaves of Crops and Orchards Based on SPAD, Multispectral, and Hyperspectral Techniques;Ecological Questions;2023-12-15

3. Biomedical Image Classification Using Convolutional Neural Networks;2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE);2023-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3