Underwater Pulse-Current FCAW - Part 1: Waveform and Process Features

Author:

JIA CHUANBAO, ,WU JUNFEI,HAN YANFEI,ZHANG YONG,YANG QINGYUAN,WU CHUANSONG

Abstract

The typical metal transfer mode in conventional underwater wet flux cored arc welding (FCAW) delivers large droplet repulsive transfer with low frequency. The process stability and the weld quality are seriously deteriorated with significant spatter and frequent arc extinctions. It is thought the repulsive forces applied on droplets can be reduced by rapidly decreasing the welding current, making the droplets sag and oscillate. A novel underwater pulsecurrent FCAW was proposed to periodically regulate the forces applied on droplets. The experimental system was developed with specially designed pulse current and reliable arc length control. Visual and electrical signals were collected simultaneously to study the process features. It was found that the maximum droplet diameter decreased to less than 5 mm; the temporary arc-extinguishing frequency decreased significantly; there was almost no short-circuit transfer and surface-tension transfer; and the stability of the welding process was significantly improved.

Publisher

American Welding Society

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3