Finite Element Analysis of Underwater Wet Welding: The Implementation of Bubble Configuration

Author:

WANG JIANFENG, ,CHEN YUYING,LIU JINPING,ZHANG TAO,LIU CHENG,YAN CANCAN,FENG YINGCHAO

Abstract

To reasonably characterize the features of underwater wet welding, especially the bubble effect engendered from a high concentration of heat, a three-dimensional (3D) numerical model considering the interaction of bubble dynamics with the boundary layer was developed. A semi-empirical method assessing the bubble growth process was incorporated into the model as boundary conditions to account for the heat loss mechanism. It was proven that consideration of the bubble configuration can improve prediction accuracy, and the predicted weld profile was in good agreement with the experimental results. To reveal the contribution of the bubble configuration while maintaining processing variables consistency, the influences of the equivalent contact radius of the bubble and its floating frequency on the temperature field evolution were evaluated. The results showed that low floating frequency and/ or a high equivalent contact radius tend to depress the heat losses to a water environment, prolong the t8/5 time, and enhance the weld width and joint penetration, which render the role of optimized bubble dynamics beneficial. Under otherwise identical conditions, the equivalent contact radius of the bubble plays a much better role than the bubble floating frequency in promoting weld pool dimensions. Based on the quantified data, suggestions concerning the matching strategy of bubble configuration and heat input for underwater wet welding may be provided.

Publisher

American Welding Society

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3