Understanding the Global Scientific Value of Industry ROV Data, to Quantify Marine Ecology and Guide Offshore Decommissioning Strategies

Author:

McLean D. L.1,Macreadie P.2,White D. J.3,Thomson P. G.1,Fowler A.4,Gates A. R.5,Benfield M.6,Horton T.5,Skropeta D.7,Bond T.1,Booth D. J.8,Techera E.1,Pattiaratchi C.1,Collin S. P.1,Jones D. O. B.5,Smith L.9,Partridge J. C.1

Affiliation:

1. The University of Western Australia

2. Deakin University

3. The University of Southampton and The University of Western Australia

4. New South Wales Department of Primary Industries

5. National Oceanography Centre

6. Louisiana State University

7. University of Wollongong, NSW

8. University of Technology

9. Woodside Energy Ltd

Abstract

This paper describes the potential global scientific value of video and other data collected by Remotely Operated Vehicles (ROVs). ROVs are used worldwide, primarily by the offshore oil and gas industry, to monitor the integrity of subsea infrastructure and, in doing so, collect terabytes of video and in situ physical data from inaccessible regions and poorly understood marine environments. The paper begins by describing how recent ROV surveys for projects in Australia have gained a new dimension by involving marine scientists in their interpretation. A previously unrecognised influence of marine life on oil and gas pipelines was uncovered, triggering new collaborations between industry and marine science. This new collaboration prompted a team of international engineers and marine scientists to gather together with West Australian based members of the oil and gas sector and ROV operators, to examine the global scientific value of ROV-collected data. If made available for research, these data have immense value for science to quantify the marine ecology and assist good stewardship of this environment by industry. It was found that most ROV operations are conducted by industry in a way that fulfils immediate industry requirements but which can confound scientific interpretation of the data. For example, there is variation in video resolution, ROV speed, distance above substrate and time (e.g. both seasonal and time of day), and these variations can limit the quantitative conclusions that can be drawn about marine ecology. We examined potential cost-effective, simple enhancements to standard ROV hardware and operational procedures that will increase the value of future industrial ROV operational data, without disrupting the primary focus of these operations. The ecological value of existing ROV data represents an immense and under-utilized resource with worldwide coverage. We describe how ROVs can unravel the mysteries of our oceans, yield scientific discoveries, and provide examples of how these data can allow quantification of the ecological value of subsea infrastructure. By using these data, we can greatly improve our knowledge of marine biodiversity on and around offshore infrastructure and their environmental impact on marine ecosystems, both of which are particularly important in the consideration and selection of decommissioning strategies. Predicting the environmental consequences of removing or retaining subsea structures after decommissioning relies on an understanding of the ecological communities that have developed in association with these structures during their operational lives. Making industrial ROV data available for scientific research, and collating it in the future using modified protocols, would provide a very positive contribution to both science and industry, allowing the environmental impacts of subsea infrastructure to be quantified. It will also allow industry to contribute to a broader scientific understanding of our oceans, given the location of ROVs in areas that can rarely be accessed by independent researchers. This would provide novel and valuable information about under-researched and little known regions of the world's oceans.

Publisher

OTC

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3