Potential Oil Recovery Enhancement by a Polymeric Nanogel Combined with Surfactant for Sandstone Reservoirs

Author:

Almahfood Mustafa Mohammed1,Bai Baojun2

Affiliation:

1. Saudi Aramco – Missouri University of Science and Technology

2. Missouri University of Science and Technology

Abstract

The aim of this study is to examine the effect of a novel combination that consists of polymeric nanogel and surfactant on oil recovery. The paper will report the extent to what the nanogel, alone and combined with surfactant, can improve oil recovery for sandstone reservoirs and reveal the mechanisms behind it. A negatively charged nanogel was synthesized using a typical free radical suspension polymerization process by employing 2-acrylamido-2-methyl propane sulfonic acid monomer. In addition, a fixed concentration of negatively charged surfactant (sodium dodecyl sulfate or SDS) was combined with different concentrations of the nanogel using seawater. The combination effect on sandstone core plugs was examined by running a series of core flooding experiments using multiple flow schemes. The synthesized nanogels showed a narrow size distribution with one peak pointing to a predominant homogeneous droplet size. They were also able to adsorb at the oil-water interfaces to reduce interfacial tension and stabilize oil-in-water emulsions, which ultimately improved the recovered oil from hydrocarbon reservoirs. The results suggest the ability of the nanogel, both alone and combined with SDS, to improve the oil recovery by a factor of 15% after initial seawater flooding. Although nanoparticles have received a great attention in the research aspect of the oil industry, however, the characterization of polymeric nanogels, alone and combined with other additives, is still to be investigated. Due to their unique properties and mechanisms, nanogels have a great potential for application in the oil industry. This study is aimed to examine and evaluate the combination of charged polymeric nanogel and surfactant dispersed in seawater through core flooding experiments using multiple injection schemes.

Publisher

OTC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3