Study on the Structure–Activity Relationship and Oil Displacement Characteristics of the Polysurfactant Agent

Author:

He Jingang12,Yuan Lin12,Gan Bicheng34,Liu Zhiqiang3,Zhang Haixiang34

Affiliation:

1. No. 1 Oil Production Plant, Daqing Oilfield Company Limited, PetroChina, Daqing 163000, China

2. Development Division of Daqing Oilfield Co., Ltd., Daqing 163000, China

3. School of Petroleum Engineering, Northeast Petroleum University, Daqing 163000, China

4. Nepu Sanya Offshore Oil&Gas Research Institute, Northeast Petroleum University, Sanya 572024, China

Abstract

This study examines a versatile polymer known as polysurfactant, which is synthesized by co-polymerizing flexible acrylamide and sodium acrylate hydrocarbon chain. The polymer serves as a backbone and possesses active functional groups. Notably, the polysurfactant exhibits superior plugging and flooding abilities compared to conventional polymers. The primary objective of this paper is to investigate the properties and oil displacement characteristics of the polysurfactant through indoor physical simulation experiments. The results demonstrate that the multi-branched structure of the polysurfactant enhances its ability to associate, leading to the formation of a unique spatial network structure. The inclusion of multi-branched structures notably amplifies the association effect. The critical concentration for the association is estimated to be around 800 mg/L, at which juncture the polysurfactant exhibits a viscosity retention rate surpassing 90% subsequent to shearing. Furthermore, this spatial network structure exhibits self-recovery capabilities after experiencing shear failure and displaying strong viscosity and shear resistance. In addition, the concentration of the polysurfactant can control the hydrodynamic feature size, which shows its adaptability in regulation and oil-repelling functions at reservoir permeabilities ranging from 500 to 2000 × 10−3 μm2 with resistance coefficients ranging from 108 to 320. During the microscopic oil displacement process, the polysurfactant exerts a significant impact on mobility control, while the elastic pull clearly demonstrates a commendable viscoelastic oil displacement effect. The polysurfactant exhibits a specific degree of emulsification capability towards crude oil, leading to the emulsion exhibiting typical pseudoplastic fluid characteristics. The utilization of emulsification transportation and emulsification blockage contributes to the enhancement of oil recovery. As a result, the polysurfactant exhibits multifaceted capabilities, encompassing profile control, flooding, and plugging, owing to its unique structural characteristics. Through the implementation of a field test focused on flooding in the Daqing Oilfield, a significant enhancement in the recovery rate of 10.85% is observed, accompanied by a favorable input–output ratio of 1:3.86, thereby generating significant economic advantages.

Funder

National Major Science and Technology Special Project, “Demonstration Project of Enhanced Recovery in Daqing Changyuan Extra-High Water Content Oilfield”

National Major Science and Technology Special Project, “Development of Large Oil and Gas Fields and Coalbed Methane”

Hainan Provincial Natural Science Foundation Upper-level Program

Heilongjiang Provincial Key R&D Program

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3