Evaluating Sand Screen Performance Using Improved Sand Retention Test and Numerical Modelling

Author:

Wu B.1,Choi S. K.1,Feng Y.1,Denke R.1,Barton T.1,Wong C. Y.1,Boulanger J.1,Yang W.1,Lim S.1,Zamberi M.2,Shaffee S.2,Jadid M. B.2,Johar Z.2,Madon B. B.2

Affiliation:

1. CSIRO

2. PETRONAS

Abstract

Abstract Sand retention tests have often been used to select optimal screen aperture for standalone sand screen applications. The purpose is to select a sand screen that maximizes hydrocarbon production and minimizes sand production. There are two types of sand retention tests currently used in the industry, i.e., slurry and prepack sand retention tests. The former aims to simulate gradual sand production condition with an open annulus between the sandface and the screen, and the latter to simulate the condition where no such annulus exists. There are, however, no agreed industry standards on how sand retention tests should be performed and test results interpreted. This paper presents a combined experimental and numerical modelling study on sand screen performance. The objective is to develop an improved methodology for optimal sand screen aperture selection by addressing some of the limitations presented in the existing sand retention tests. A new sand retention test facility has been developed at CSIRO, incorporating a number of improvements into the design and experimental procedure. A key component of the improvements is the ability to separately measure retained screen permeability and sand pack permeability. Correlations have been developed between sand screen performance and key parameters of the sands and screen based on a large number of sand slurry retention tests. Furthermore, the sand retention process was simulated numerically using a 3D fully coupled Discrete Element (DEM) – Computational Fluid Dynamics (CFD) model. Parametric studies have been conducted to assess screen performance and to gain a better understanding of sand retention and production mechanisms.

Publisher

OTC

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3