A New All Electric Subsea Control System Development

Author:

Monteverde Carlo1,Novello Marco1,Kristiansen Karstein2

Affiliation:

1. Saipem S.p.A.

2. Siemens AS

Abstract

Abstract Over the past few years a specific programme has focused on the development of subsea separators and a subsea water treatment and injection process composed of several modules and requiring a certain amount of new subsea technology (subsea barrier fluid-less water injection pumps, filters, special water analyzers, etc.). One of these technologies is the all-electric subsea control system. The all-electric versus the electro-hydraulic solution was selected for its inherent capability to:enable long step-out distances;run logics such as sequences and fast closed control loops involving subsea proportional valves;handle high frequency of simultaneous valve actuations;implement safety functions, including SIL certified, when required. Within the ongoing industrialization programme of the new technologies, a Joint Development Agreement has been put in place between two partners for the qualification of the open framework platform for the control of subsea processes. The development is pursued according to the API 17N and DNV RP-A203 requirements. The subsea control system is developed according to the approach to interface standardization, which is aimed at guaranteeing:–the interchangeability of modules coming from different vendors;–the reduction of physical interfaces;–the optimization of IMR intervention time. The technology mainly consists of:a qualified basic component platform to be used for project-based assembly;a complete set of tools such as web-server, condition monitoring server, integrated software development environment, etc.;a standard and user-friendly approach for software application development, based on P&ID graphic, in order to facilitate the sharing of software information between contractor and clients;standard industrial communication protocols (no proprietary protocols) accessible to all users, which are designed for easy interfacing of the control system with third party equipment. The JDA activity has concluded the Q1 qualification tests of electronic components and Q2 tests of electronic assemblies, pursuant to API 17F, as well as all the other qualification activities (tests and analyses) relevant to the non-electronic components (e.g. 40kVA subsea electrical transformer), according to the relevant technology qualification plan. Additional software packages have also been developed and successfully tested using the Test Driven Development (TDD) method. The qualification will be completed by Q1 2019 with integration tests of:–Topside Control System;–Subsea Power and Communication Distribution Manager;–Subsea Control Unit. The integration tests will allow to reach TRL 4 of the above subsea equipment, in accordance with API 17N.

Publisher

OTC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3