First Use of ROV Remote Operations from Shore in the Gulf of Mexico

Author:

Silva Simao1,Terrell Blake1,Philip Mark1,Rouge Nicholas1,Angelidis Diogenes2,Sosa Julio2,Collins Robert2,Rauf Zain2

Affiliation:

1. Oceaneering International Inc.

2. Shell Offshore Inc.

Abstract

Abstract Oil and gas companies across the spectrum are moving toward digitalization. Leveraging technology to access real-time data has allowed companies to streamline activities and gain operational efficiencies while at the same time improving worker safety by reducing the number of personnel required offshore. This evolution optimizes operations by enabling better decision-making by subject matter experts (SMEs) located around the world working as one interconnected team. Functions once performed exclusively by offshore personnel are being carried out today by onshore workers via remote technology. By capitalizing on the ability to communicate offshore via high-speed internet, it is now possible to carry out ROV operations using a team that includes onshore based personnel. A recent project illustrates how ROV activities controlled from an onshore remote operations center in Louisiana were carried out successfully on a production Tension Leg Platform (TLP) in the Gulf of Mexico (GoM). The technology used onboard the TLP is not new; operators have been remotely managing a range of functions on offshore assets for years. However, the project does apply this proven approach to ROV piloting operations for the first time commercially in the GoM. Transferring ROV control from the offshore platform to a facility onshore is possible using a communication link that connect real-time data from the offshore asset to the onshore remote operations center (OROC). The two-way communications link provides a redundant system in which controls can be executed either from the offshore platform or from the remote operations center, allowing specialized roles that historically have been executed offshore, including that of the ROV pilot, subsea engineer, and company representative directing the work, to be transferred to a land-based team. The increase in data required from the offshore asset for the GoM project was managed via a dedicated link that provided data transfer at a minimum speed of 3 Mbps upload/download with a fail-safe system that automatically default control to the offshore ROV team in case of any failures in the communication link. Remotely piloting an ROV from shore and coordinating with an offshore crew not only delivered a reduction in HSE exposure but reduced overall personnel costs on the asset by more than 30% for 24 hours of operations. This approach to ROV operations has the potential to reduce costs by reducing the number of workers required offshore even further if additional staff associated exclusively with the project subsea work scope is directed to work remotely from shore.

Publisher

OTC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3