A New Approach to History Matching Using Reservoir Characterization and Reservoir Simulation Integrated Studies

Author:

Avansi G.D.1,Schiozer D.J.1

Affiliation:

1. State University of Campinas

Abstract

Reservoir characterization is very important to the success of a history matching and production forecasting. Thus, numerical simulation becomes a powerful tool for the reservoir engineer in quantifying the impact of uncertainties in field development and management planning, calibrating a model with history data and forecasting field production, resulting in a reliable numerical model. History matching has been integrated into several areas, such as geology (geological characterization and petrophysical attributes), geophysics (4D seismic data), statistical approaches (Bayesian theory and Markov field), and computer science (evolutionary algorithms). Although most integrated history-matching studies use a unique objective function (OF), this is not enough. A history matching by simultaneous calibrations of different OF is necessary because all wells must have their OF near the acceptance range as well as maintain the consistency of generated geological models during reservoir characterization. The main goal of this work is to integrate history matching and reservoir characterization; applying a simultaneous calibration of different OF in a history matching procedure and keeping the geological consistency in an adjustment approach to reliably forecast production. We also integrate virtual wells and geostatistical methods into the reservoir characterization to ensure realistic geomodels without creating the geological discontinuities to match the reservoir numerical model. The proposed integrated calibration methodology consists of using a geostatistical method for modelling the spatial reservoir property distribution based on the well log data, running a numerical simulator and adjusting conditional realizations (models) based on geological modeling (variogram model, vertical proportion curve and regularized well log data) and reservoir uncertainties, using a simultaneous adjustment of different OF to evaluate the history matching process and virtual wells to perturb geological continuities such as channels and barriers. In conclusion, we present an effective methodology to preserve the consistency of geological models during history matching process. In addition, we simultaneously combine different OF to calibrate and validate the models with well production data. Reliable numerical and geological models are used in the forecasting production under uncertainties to validate the integrated procedure.

Publisher

OTC

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3