Impact of Injection Scenario on CO2 Leakage and CO2 Trapping Capacity in Homogeneous Reservoirs

Author:

Al-Khdheeawi Emad A.1,Vialle Stephanie1,Barifcani Ahmed1,Sarmadivaleh Mohammad1,Iglauer Stefan1

Affiliation:

1. Curtin University

Abstract

Abstract The impact of different injection scenarios on the vertical CO2 leakage and on the capacity of CO2 storage in homogeneous reservoirs has been systematically investigated by comparing the total vertical CO2 plume migration distance, the amount of free CO2 and the capacities of capillary and solubility trapping obtained. A 3D homogeneous reservoir simulation model has been developed to simulate a CO2 plume behavior for three different injection scenarios (water alternating CO2 (WACO2) injection, periodic injection and standard continuous CO2 injection). The injection period was 20 years and the total amount of injected CO2 was 20 Mton, for all injection scenarios. Then, after the end of the injection period, a storage period of 200 years was simulated. We then compared the CO2 leakage and the amount of free, dissolved and trapped CO2 between these three injection scenarios. The results show that, after 200 years CO2 storage period, injection scenario significantly affects the vertical CO2 leakage and the CO2 trapping capacities in homogeneous reservoirs. Firstly, our results show that the standard continuous CO2 injection and periodic injection scenarios lead to increase the CO2 mobility and vertical CO2 leakage. In addition, the simulation results show that the amount of CO2 trapped (by both residual and solubility trapping) in the standard continuous CO2 injection scenario is less than that trapped in the other injection scenarios. Thus, we conclude that injection scenario has an important effect on the CO2 sequestration processes.

Publisher

OTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3