Novel rearrangements in the mitochondrial genomes of the Ceramiales (Rhodophyta) and evolutionary implications

Author:

Seo Min Ho,Kang Shin Chan,Kim Kyeong Mi,Kwak Min Seok,Jo Jihoon,Choi Han-Gu,Boo Ga Hun,Yoon Hwan Su

Abstract

The Ceramiales is the most diverse and species-rich group (2,669 spp.) of red algae, and it is widely distributed from tropical to polar oceans. Mitochondrial genomes (mitogenomes) and other genes have contributed to our knowledge regarding the classification and phylogeny of this diverse red algal group; however, the mitogenome architecture remains understudied. Here, we compared 42 mitogenomes, including 19 newly generated in this study, to expand our knowledge. The number of genes in mitogenome varied from 43 to 68 due to gene duplication. The mitogenome architecture was also variable, categorized into four types (A–D): type A = ancestral type with a basic composition; type B = those with inverse transpositions; type C = those with inverted duplications; and type D = those with both inversion and duplication. The palindromic and inverted repeats were consistently found in flanking regions of the rearrangement, especially near the cob and nad6 genes. The three rearranged mitogenome architectures (types B, C, D) are the first report of these in red algae. Phylogenetic analyses of 23 protein-coding genes supported the current familial classification of the Ceramiales, implying that the diversity of mitogenome architecture preceded the phylogenetic relationships. Our study suggests that palindromic and inverted repeats may drive mitogenome architectural variation.

Funder

National Research Foundation of Korea

Cooperative Research Program for Agriculture Science and Technology Development

Rural Development Administration

National Marine Biodiversity Institute of Korea

Publisher

The Korean Society of Phycology

Subject

Plant Science,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3