Ecophysiology of the kleptoplastidic dinoflagellate Shimiella gracilenta: I. spatiotemporal distribution in Korean coastal waters and growth and ingestion rates

Author:

Ok Jin Hee,Jeong Hae Jin,Kang Hee Chang,Park Sang Ah,Eom Se Hee,You Ji Hyun,Lee Sung Yeon

Abstract

To explore the ecophysiological characteristics of the kleptoplastidic dinoflagellate Shimiella gracilenta, we determined its spatiotemporal distribution in Korean coastal waters and growth and ingestion rates as a function of prey concentration. The abundance of S. gracilenta at 28 stations from 2015 to 2018 was measured using quantitative realtime polymerase chain reaction. Cells of S. gracilenta were detected at least once at all the stations and in each season, when temperature and salinity were 1.7–26.4°C and 9.9–35.6, respectively. Moreover, among the 28 potential prey species tested, S. gracilenta SGJH1904 fed on diverse prey taxa. However, the highest abundance of S. gracilenta was only 3 cells mL-1 during the study period. The threshold Teleaulax amphioxeia concentration for S. gracilenta growth was 5,618 cells mL-1, which was much higher than the highest abundance of T. amphioxeia (667 cells mL-1). Thus, T. amphioxeia was not likely to support the growth of S. gracilenta in the field during the study period. However, the maximum specific growth and ingestion rates of S. gracilenta on T. amphioxeia, the optimal prey species, were 1.36 d-1 and 0.04 ng C predator- 1 d-1, respectively. Thus, if the abundance of T. amphioxeia was much higher than 5,618 cells mL-1, the abundance of S. gracilenta could be much higher than the highest abundance observed in this study. Eurythermal and euryhaline characteristics of S. gracilenta and its ability to feed on diverse prey species and conduct kleptoplastidy are likely to be responsible for its common spatiotemporal distribution.

Publisher

The Korean Society of Phycology

Subject

Plant Science,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3