Abstract
AbstractThis paper generalizes the exponential Runge-Kutta asymptotic preserving (AP) method developed in [G. Dimarco and L. Pareschi,SIAM Numer. Anal., 49 (2011), pp. 2057-2077] to compute the multi-species Boltzmann equation. Compared to the single species Boltzmann equation that the method was originally applied on, this set of equation presents a new difficulty that comes from the lack of local conservation laws due to the interaction between different species. Hence extra stiff nonlinear source terms need to be treated properly to maintain the accuracy and the AP property. The method we propose does not contain any nonlinear nonlocal implicit solver, and can capture the hydrodynamic limit with time step and mesh size independent of the Knudsen number. We prove the positivity and strong AP properties of the scheme, which are verified by two numerical examples.
Subject
Physics and Astronomy (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献