A discrete unified gas-kinetic scheme for multi-species rarefied flows

Author:

Xin Ziyang,Zhang Yue,Guo Zhaoli

Abstract

AbstractA discrete unified gas kinetic scheme (DUGKS) is developed for multi-species flow in all flow regimes based on the Andries-Aoki-Perthame (AAP) kinetic model. Although the species collision operator in the AAP model conserves fully the mass, momentum, and energy for the mixture, it does not conserve the momentum and energy for each species due to the inter-species collisions. In this work, the species collision operator is decomposed into two parts: one part is fully conservative for the species and the other represents the excess part. With this decomposition, the kinetic equation is solved using the Strang-splitting method, in which the excess part of the collision operator is treated as a source, while the kinetic equation with the species conservative part is solved by the standard DUGKS. Particularly, the time integration of the source term is realized by either explicit or implicit Euler scheme. By this means, it is easy to extend the scheme to gas mixtures composed of Maxwell or hard-sphere molecules, while the previous DUGKS [Zhang Y, Zhu L, Wang R et al, Phys Rev E 97(5):053306, 2018] of binary gases was only designed for Maxwell molecules. Several tests are performed to validate the scheme, including the shock structure under different Mach numbers and molar concentrations, the Couette flow under different mass ratios, and the pressure-driven Poiseuille flow in different flow regimes. The results are compared with those from other reliable numerical methods based on different models. And the influence of molecular model on the flow characteristics is studied. The results also show that the present DUGKS with implicit source discretization is more stable and preferable for gas mixture problems involving different flow regimes.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Aerospace Engineering,Modeling and Simulation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

Reference60 articles.

1. Karniadakis G, Beskok A, Aluru N (2006) Microflows and nanoflows: fundamentals and simulation, vol 29. Springer New York, NY

2. Fang M, Li ZH, Li ZH et al (2020) DSMC modeling of rarefied ionization reactions and applications to hypervelocity spacecraft reentry flows. Adv Aerodyn 2(1):7

3. Zhu Y, Zhong C, Xu K (2021) GKS and UGKS for high-speed flows. Aerospace 8(5):141

4. Sharipov F (2015) Rarefied gas dynamics: fundamentals for research and practice. Wiley-VCH, Weinheim

5. Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3