Author:
Xin Ziyang,Zhang Yue,Guo Zhaoli
Abstract
AbstractA discrete unified gas kinetic scheme (DUGKS) is developed for multi-species flow in all flow regimes based on the Andries-Aoki-Perthame (AAP) kinetic model. Although the species collision operator in the AAP model conserves fully the mass, momentum, and energy for the mixture, it does not conserve the momentum and energy for each species due to the inter-species collisions. In this work, the species collision operator is decomposed into two parts: one part is fully conservative for the species and the other represents the excess part. With this decomposition, the kinetic equation is solved using the Strang-splitting method, in which the excess part of the collision operator is treated as a source, while the kinetic equation with the species conservative part is solved by the standard DUGKS. Particularly, the time integration of the source term is realized by either explicit or implicit Euler scheme. By this means, it is easy to extend the scheme to gas mixtures composed of Maxwell or hard-sphere molecules, while the previous DUGKS [Zhang Y, Zhu L, Wang R et al, Phys Rev E 97(5):053306, 2018] of binary gases was only designed for Maxwell molecules. Several tests are performed to validate the scheme, including the shock structure under different Mach numbers and molar concentrations, the Couette flow under different mass ratios, and the pressure-driven Poiseuille flow in different flow regimes. The results are compared with those from other reliable numerical methods based on different models. And the influence of molecular model on the flow characteristics is studied. The results also show that the present DUGKS with implicit source discretization is more stable and preferable for gas mixture problems involving different flow regimes.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Aerospace Engineering,Modeling and Simulation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering
Reference60 articles.
1. Karniadakis G, Beskok A, Aluru N (2006) Microflows and nanoflows: fundamentals and simulation, vol 29. Springer New York, NY
2. Fang M, Li ZH, Li ZH et al (2020) DSMC modeling of rarefied ionization reactions and applications to hypervelocity spacecraft reentry flows. Adv Aerodyn 2(1):7
3. Zhu Y, Zhong C, Xu K (2021) GKS and UGKS for high-speed flows. Aerospace 8(5):141
4. Sharipov F (2015) Rarefied gas dynamics: fundamentals for research and practice. Wiley-VCH, Weinheim
5. Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford