A Comparative Study on Various Machine Learning Algorithms for the Prediction of Fake News Detections Using Bring Feed New Data Sets

Author:

G. Senthilkumar 1,D. Ashok Kumar 1

Affiliation:

1. Department of Computer Science, Dr. Kalaignar Government Arts College(Affiliated to Bharathidasan University, Tiruchirappalli) Kulithalai, TamilNadu, India

Abstract

To read the news, most smartphone users prefer social media over the internet. The news is posted on news websites, and the source of the verification is cited. The problem is determining how to verify the news and publications shared on social media platforms such as Twitter, Facebook Pages, WhatsApp Groups, and other microblogs and social media platforms. It is damaging to society to hold on to rumors masquerading as news. The request for an end to speculations, particularly in developing countries such as India, with a focus on authenticated, accurate news reports. This essay demonstrates a model and process for detecting false news. The internet is a significant invention, as well as a substantial number of individuals use it. These people use it for a variety of purposes. These users have access to a variety of social media platforms. Through these online platforms, any user can make a post or spread news. FAKE NEWS has spread to a larger audience than ever before in this digital era, owing primarily to the rise of social media and direct messaging platforms. Fake news detection requires significant research, but it also presents some challenges. Some difficulties may arise as a result of a limited number of resources, such as a dataset. In this project, we propose a machine learning technique for detecting fake news and implementing a novel automatic fake news credibility inference model with Natural language processing steps that include text mining. Machine learning algorithms construct a deep diffusive network model based on a set of explicit and latent features extracted from textual information to simultaneously learn the representations of news articles, creators, and subjects. The "Fake News Challenge" is a Kaggle competition, and the social network is using AI to sift fake news articles out of users' feeds. In the comparison study, three algorithms—Random Forest, Navy Bayes, and Passive Aggressive classifier—are used to determine the text accuracy value for the precision, recall, and f1 score using these methods. Finally, Passive Aggressive Classifier approach provides greater accuracy compared to others. Combating fake news is a traditional text categorization project with a simple proposition.

Publisher

Technoscience Academy

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Pay-Close-Enough-Attention Ensemble Classifier for Spotlighting Bogus Reviews;2023 4th IEEE Global Conference for Advancement in Technology (GCAT);2023-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3