Temperature State of the Anisotropic Spherical Layer During Convective Heat Exchange with the Environment

Author:

Zarubin V.S.1,Leonov V.V.1,Zarubin V.S. Jr.1

Affiliation:

1. Bauman Moscow State Technical University

Abstract

The paper focuses on the process of steady heat conduction in a spherical layer of a heat-shielding coating made of anisotropic material. The inner surface of the layer is ideally heat-insulated but its outer surface is exposed to heating by convective heat exchange with the environment, the temperature of which varies along this surface. Based on the obtained solution of the linear heat conduction problem, we quantitatively assessed the influence of the degree of anisotropy of the coating material, its relative thickness, intensity of convective heat transfer, and uneven distribution of ambient temperature on the equalization of temperature distribution in the spherical layer. The results obtained can be used to select the characteristics of an anisotropic coating material in order to reduce the temperature of the outer surface of the spherical layer in the zone of the most intense heating.

Funder

Russian Science Foundation

Publisher

Bauman Moscow State Technical University

Subject

General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mathematical Simulation of Thermal Shock Wave Dynamics in Nonlinear Local Non-Equilibrium Media;Herald of the Bauman Moscow State Technical University. Series Natural Sciences;2022-08

2. Investigation of the thermal characteristics of a metal-anisotropic composite contact pair;Journal of Physics: Conference Series;2021-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3