Mathematical Simulation of Thermal Shock Wave Dynamics in Nonlinear Local Non-Equilibrium Media

Author:

Formalev V.F.1,Garibyan B.A.1,Kolesnik S.A.1

Affiliation:

1. Moscow Aviation Institute (National Research University)

Abstract

We performed a mathematical simulation of heat transfer in a local non-equilibrium medium whose transfer characteristics are functions of the temperature distribution. A homogeneous polynomial of arbitrary degree represents nonlinearities in thermal conductivity and thermal diffusivity. The mathematical model consists of a hyperbolic nonlinear heat transfer wave equation, initial conditions and nonlinear boundary conditions of the second and first kind. To solve this problem, we used a conservative homogeneous finite-difference scheme along the upper time grid line (implicitly). We then used the tridiagonal matrix algorithm of the second order in the spatial variable and of the first order in time to solve the resulting system of linearised algebraic equations. A periodic series of rectangular temperature or heat flux pulses form the boundary conditions of the first and second kind. Computation results reveal ultimate propagation rates of temperature and heat fronts featuring pronounced first-kind discontinuities with attenuating magnitudes. As the process unfolds, the initial pulses heat the region between the boundary and the heat wave front, while the subsequent pulses traverse this region at a higher velocity due to thermal diffusivity being a function of temperature, their fronts "catching up" with the previous fronts, increasing the discontinuity magnitude at the initial pulse front, that is, forming a thermal shock wave front similar to that of a shock wave in gas dynamics. We obtained such thermal shock waves for boundary conditions of both the first and the second kind. We also analysed kinematic and dynamic characteristics of thermal waves

Funder

Russian Science Foundation

Publisher

Bauman Moscow State Technical University

Subject

General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3