Hierarchical Linear Modeling of Multilevel Data

Author:

Todd Samuel Y.1,Crook T. Russell2,Barilla Anthony G.1

Affiliation:

1. 1Georgia Southern University

2. 2Northern Arizona University

Abstract

Most data involving organizations are hierarchical in nature and often contain variables measured at multiple levels of analysis. Hierarchical linear modeling (HLM) is a relatively new and innovative statistical method that organizational scientists have used to alleviate some common problems associated with multilevel data, thus advancing our understanding of organizations. This article presents a broad overview of HLM’s logic through an empirical analysis and outlines how its use can strengthen sport management research. For illustration purposes, we use both HLM and the traditional linear regression model to analyze how organizational and individual factors in Major League Baseball impact individual players’ salaries. A key implication is that, depending on the method, parameter estimates differ because of the multilevel data structure and, thus, findings differ. We explain these differences and conclude by presenting theoretical discussions from strategic management and consumer behavior to provide a potential research agenda for sport management scholars.

Publisher

Human Kinetics

Subject

Organizational Behavior and Human Resource Management,Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,General Decision Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3