Experimental Simulation of an Airborne Movement: Applicability of the Body Segment Parameter Estimation Methods

Author:

Kwon Young-Hoo

Abstract

The purpose of this study was twofold: (a) to investigate the effect of the method of body segment parameter (BSP) estimation on the accuracy of the experimental simulation of a complex airborne movement; and (b) to assess the applicability of selected BSP estimation methods in the experimental simulation. It was hypothesized that different BSP estimation methods would provide different simulation results. A sensitivity analysis was performed to identify the BSP items and segments responsible for the inter-method differences in the simulation accuracy. The applicability of the estimation methods was assessed based on the simulation results and the number of anthropometric parameters required. Ten BSP estimation methods classified into 3 groups (4 cadaver-based, 4 gamma mass scanning-based, and 2 geometric) were employed in a series of experimental simulations based on 9 double-somersault-with-full-twist H-bar dismounts performed by 3 male college gymnasts. The simulated body orientation angles were compared with the corresponding observed orientation angles in computing the simulation errors. The inclination and twist simulation errors revealed significant (p < .05) differences among the BSP estimation groups and methods. It was concluded that: (a) the method of BSP estimation significantly affected the simulation accuracy, and more individualized BSP estimation methods generally provided more accurate simulation results; (b) the mass items, and the lower leg and thorax/ abdomen were more responsible for the intermethod differences in the simulation accuracy than other BSP items and segments, respectively; (c) the ratio methods and the simple regression methods were preferable in simulation of the somersaulting motion due to the fewer anthropometric parameters required; (d) the geometric models and the cadaver-based stepwise regression method were superior to the other methods in the simulation of the complex airborne motion with twist.

Publisher

Human Kinetics

Subject

Rehabilitation,Orthopedics and Sports Medicine,Biophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3