Option selection in whole-body rotation movements in gymnastics

Author:

HEINEN Thomas1,NICOLAUS Marc1

Affiliation:

1. University of Hildesheim, Germany

Abstract

Abstract When a gymnast performs a somersault, the linear and angular momentum along with a particular control of inertia during the flight phase constrain the possibilities for action. Given the complexity and dynamic nature of the human moving system, one could argue that there exist a particular amount of stable coordination states when performing somersaults. The goal of this study was to explore the manifold of movement options and coordination states along with their differentiating parameters for a single somersault in gymnastics based on a simple mathematical model reflecting gymnast’s rotation behavior during the flight phase. Biomechanical parameters determining rotation behavior during a somersault were systematically varied with regard to a particular set of biomechanical constraints defining a successful somersault performance. Batch simulations revealed that from 10229760 simulation cycles only 655346 (approximately 6.41%) led to successful somersault performance. A subsequent analysis of the movement option landscape for the optimum angular momentum revealed ten coordination states for a single somersault that could be clearly distinguished based on the simulation parameters. Taken the results together, it becomes apparent that it may be most advisable to perform a single somersault with a larger moment of inertia when achieving the tucked position, a longer duration to achieve the tucked position, a longer duration of staying tucked, and an intermediate moment of inertia during landing. This strategy comprises the largest amount of movement options associated with an upright landing and thus the highest probability of success when performing a single somersault.

Publisher

FapUNIFESP (SciELO)

Reference40 articles.

1. How to create champions: the theory and methodology of training top-class gymnasts;Arkaev LI.,2004

2. Biomechanics and biology of movement;Yeadon MR,2000

3. Progress in brain research;Raab M,2009

4. Dynamics of skill acquisition: a constraints-led approach;Davids K,2008

5. The dynamics of perception and action;Warren WH;Psych Rev,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3