MODELING OF PAVEMENT ROUGHNESS UTILIZING ARTIFICIAL NEURAL NETWORK APPROACH FOR LAOS NATIONAL ROAD NETWORK

Author:

Gharieb Mohamed1,Nishikawa Takafumi2,Nakamura Shozo1,Thepvongsa Khampaseuth3

Affiliation:

1. Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

2. Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521,

3. Faculty of Engineering, National University of Laos, Lao-Thai Road, Sokpaluang Village, Sisatanak District, Vientiane Capital, Laos

Abstract

The International Roughness Index (IRI) has become the reference scale for assessing pavement roughness in many highway agencies worldwide. This research aims to develop two Artificial Neural Network (ANN) models for Double Bituminous Surface Treatment (DBST) and Asphalt Concrete (AC) pavement sections using Laos Pavement Management System (PMS) database for National Road Network (NRN). The final database consisted of 269 and 122 observations covering 1850 km of DBST NRN and 718 km of AC NRN, respectively. The proposed models predict IRI as a function of pavement age and Cumulative Equivalent Single-Axle Load (CESAL). The obtained data were randomly divided into training (70%), validation (15%), and testing (15%) datasets. The statistical evaluation results of the training dataset reveal that both ANN models (DBST and AC) have good prediction ability with high values of coefficient of determination (R2 = 0.96 and 0.94) and low values of Mean Absolute Error (MAE = 0.23 and 0.19) and Mean Squared Percentage Error (RMSPE = 7.03 and 9.98). Eventually, the goodness of fit of the proposed ANN models was compared with the Multiple Linear Regression (MLR) models previously developed under the same conditions. The results show that ANN models yielded higher prediction accuracy than MLR models.

Publisher

Vilnius Gediminas Technical University

Subject

Strategy and Management,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3