ON THE NUMERICAL SIMULATION OF TIME-SPACE FRACTIONAL COUPLED NONLINEAR SCHRÖDINGER EQUATIONS UTILIZING WENDLAND’S COMPACTLY SUPPORTED FUNCTION COLLOCATION METHOD

Author:

Karaman Bahar1ORCID

Affiliation:

1. Department of Mathematics, Eskişehir Technical University, Eskişehir, 26555 Tepebaş, Turkey

Abstract

This research describes an efficient numerical method based on Wendland’s compactly supported functions to simulate the time-space fractional coupled nonlinear Schrödinger (TSFCNLS) equations. Here, the time and space fractional derivatives are considered in terms of Caputo and Conformable derivatives, respectively. The present numerical discussion is based on the following ways: we first approximate the Caputo fractional derivative of the proposed equation by a scheme order O(∆t2−α), 0 < α < 1 and then the Crank-Nicolson scheme is employed in the mentioned equation to discretize the equations. Second, applying a linear difference scheme to avoid solving nonlinear systems. In this way, we have a linear, suitable calculation scheme. Then, the conformable fractional derivatives of the Wendland’s compactly supported functions are established for the scheme. The stability analysis of the suggested scheme is also examined in a similar way to the classic Von-Neumann technique for the governing equations. The efficiency and accuracy of the present method are verified by solving two examples.

Publisher

Vilnius Gediminas Technical University

Subject

Modelling and Simulation,Analysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3