BÉZIER BASE EXTENDED ISOGEOMETRIC NUMERICAL METHOD FOR THERMO ELASTIC-PLASTIC ANALYSIS OF CRACK PROPAGATION IN CRACKED PLATE UNDER WELDING RESIDUAL STRESS AND THERMAL LOAD

Author:

Shoheib Mohammad M.1ORCID,Shahrooi Shahram1,Shishehsaz Mohammad2ORCID,Hamzehei Mahdi1

Affiliation:

1. Department of Mechanical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

2. Department of Mechanical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran; Department of Mechanical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

A new procedure in the field of Bézier base extended isogeometric method (XIGA) has been introduced to analyze the effect of welding residual stress and thermal load on crack propagation rate and fatigue life. This new procedure is based on the constitutive thermoelastic plastic equation. The main parts of this procedure are using the B´ezier base XIGA method to calculate the redistribution of welding residual stress due to crack growth and to compute the value of stress intensity factor (SIF) in the welding residual stress field. For this purpose, the grid points of Bézier elements (with C0-continuity) around the crack line and the crack tip are identified by the level set representation. Then, discontinuous enrichment functions are added to the isogeometric analysis approximation. Thus, this method does not require the re-meshing process. The results show that there is a good agreement between the results of proposed numerical method and the Hole-Drilling Strain-Gage method. The interaction integral method has been used to extract SIF. The effects of welding residual stress and thermal load on the SIF are considered using the superposition method. Also, the Walker equation has been modified to calculate the fatigue life caused by thermal loading and welding residual stress. The results display a good agreement between the proposed method and the finite element method. Due to the advantages of the Bézier based XIGA method, which eliminates parametric space and allows the precise addition of enrichment functions to the basis functions of cracked elements (crack line or crack tip), the obtained results are highly accurate that shows this method is effective for analyzing discontinuous problems.

Publisher

Vilnius Gediminas Technical University

Subject

Modeling and Simulation,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3