COMPOSITE FINANCIAL PERFORMANCE INDEX PREDICTION – A NEURAL NETWORKS APPROACH

Author:

Sabău Popa Diana Claudia1ORCID,Popa Dorina Nicoleta1ORCID,Bogdan Victoria1ORCID,Simut Ramona2ORCID

Affiliation:

1. Department of Finance and Accounting, Faculty of Economic Sciences, University of Oradea, Oradea, Romania

2. Department of Economics and Business, Faculty of Economic Sciences, University of Oradea, Oradea, Romania

Abstract

Financial indicators are the most used variables in measuring the business performance of companies, signaling about the financial position, comprehensive income, and other significant reporting aspects. In a competitive environment, the performance measurement model allows performing comparative analysis in the same industry and between industries. This paper aims to design a composite financial index to determine the financial performance of listed companies, further used in predicting business performance through neural networks. Principal components analysis was used to build a composite financial index, employing four traditional accounting indicators and four value-based indicators for the period 2011–2018. Five experiments were conducted to predict business performance through the composite financial index. The results showed that observations from two years, of the first three experiments, indicate a better predictive behavior than the same experiments using observations from one year. Therefore, we concluded that observations from more than one year are necessary to predict the value of the financial performance index. Findings led us to the conclusion that recurrent neural networks model predicted better financial performance composite index when taken into consideration more real data for the financial performance index (2012–2018) instead of just for one year (2018).

Publisher

Vilnius Gediminas Technical University

Subject

Economics and Econometrics,Business, Management and Accounting (miscellaneous)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3