Early warning model and prevention of regional financial risk integrated into legal system

Author:

Zhuang YanyuORCID,Wei Hua

Abstract

In order to improve the laws and regulations of the financial system, in the construction of laws and regulations, the traditional financial risk Early Warning (EW) model is optimized. The financial prevention and control measures with legal protection are implemented to warn the financial risks, which plays an important role in the construction of the rule of law in the Financial Market (FM) and the establishment of financial risk prevention and control laws and regulations. This paper combines the deep learning model and the Markov regime Switching Vector Auto Regression (MS-VAR) model and constructs a regional financial risk EW model from the following aspects: macroeconomic operation EW indicators, regional economic risk EW indicators, regional financial institution risk EW indicators. The model is empirically researched and analyzed. The results show that the fluctuation trend of the macroeconomic pressure index in the time series is relatively large, and the overall fluctuation of the regional economic pressure index is small, and fluctuates around 0 in most periods. After the financial crisis, local governments stepped up their supervision of non-performing corporate and household loans. From 2011 to 2018, the non-performing loan ratio began to decline, and the overall fluctuation of the regional financial comprehensive stress index was small, fluctuating around 0. Due to the lack of legal regulation, from the perspective of the regional economy, the risk level is more likely to change from low risk to moderate risk, while the risk status is less likely to change from high risk to moderate risk. From the perspective of regional financial institutions, the probabilities of maintaining low risk and moderate risk are 0.98 and 0.97, respectively, which is stronger than maintaining the stability of high risk. From the perspective of the state transition of the regional financial risk composite index, the probability of maintaining low risk and high risk is 0.97 and 0.93, which is higher than maintaining the stability of medium risk. The Deep Learning (DL) regional financial risk EW MS-VAR model has strong risk prediction ability. The model can better analyze the conversion probability of regional financial risk EW index and has better risk EW ability. This paper enhances the role of legal systems in financial risk prevention and control. The regional financial risk EW model incorporating financial legal indicators can better describe the regional financial risk level, and the EW results are basically consistent with the actual situation. In order to effectively prevent financial risks and ensure the safety of the financial system, it is recommended that the government improve local debt management, improve financial regulations and systems, and improve the legislative level of financial legal supervision.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3